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Abstract 

           This work modeled the sunspot numbers using harmonic analysis. A period of 10.8 years identified 
by Iwok (2011) was used in building the model. It was observed that the fitted sinusoid accounted for 
71.7% of the variance of the observed time series 푋 . The fitted model was also found to be adequate 
and can be used for predicting the future of sunspot numbers. 
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Introduction/Review 

          Sunspots are dark spots within the outermost layer of the sun called the photosphere. The 
photosphere is about 400km deep and provides most of our solar radiation. Sunspots were observed in 
the far East over 2000 years ago but was examined more intensively in Europe after the invention of 
telescopes in the 17th century. Since the mid eighteen century, an observatory in Switzerland has been 
recording monthly, a measure of the number of sunspots, for reasons of their own and presumably at 
considerable risk to the astronomer’s eyesight, thus providing one of the longest time series available 
for analysis (Granger, 1989). 

          Sharaf and Amr (2009) noted that sunspots are a key factor and a good usable indicator of solar 
activity for sun-weather relationship. In their analysis, they pointed out that an obvious condition must 
be met before sunspot numbers can be used to predict changes in weather and climate. Sharaf and Amr 
(2009) carried out a data analysis of the sunspot numbers using annual mean and autocorrelations. 
Confidence intervals were constructed and the results were supported graphically and computationally 
by many tests. 

          The well known 11 year cycle of the number of sunspots was first demonstrated by Henrich 
Schwab in 1843. 
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           Richard (2005) confirmed the existence of cycles in sunspot numbers using early historical 
methods, and this was calculated to be 11.1 years. 

           Iwok (2011) identified the cycles in sunspot numbers using percentage variance technique and 
was found to be 10.8 years. By this calculation, it means that sunspot numbers rise and fall 
approximately every 10.8 years. 

           Due to the enormous importance of sunspot study to man and his environment, researchers have 
fitted several models to sunspot numbers over the years, ranging from the simple linear approach to 
non linear methods. 

           Tsirulnik et al (1997) used a method of non linear spectral analysis named by the method of the 
global minimum to find periodicities in the annual wolf sunspot numbers for the 295 year time period 
(1700-1995). It was discovered that the normalized mean square error of the model fitted well to the 
data and the magnetic cycle were found to be non stationary with a mean period of 22.3 years. 

           Granger (1989) fitted a model of the form:    

                       푋 = 퐴퐶표푠(휔푡 + 휃) + 휀                                                               (1) 

to the sunspot series and a worthwhile fit was obtained but the estimated residuals were observed to 
be too smooth to be white noise. 

           Similarly Kenedy et al (2010) modeled the sunspot numbers using Fourier analysis. It was 
discovered that despite the complexity of the method, the white noise 휀  failed the assumption of being 
independently normal and identically distributed random variables. 

           This research, however, attributes the failures of the afformentioned works to the use of 
inappropriate models to cater for the cycles and hence the need for modifications and extensions. It is 
therefore the intent of this work to propose and fit a model that gives 휀  as a purely random process. 

Method of Analysis 

            This research uses harmonic form of time series as a type of regression analysis. By definition, a 
time series is a series of observation made sequentially in time. The yearly recordings of the sunspot 
numbers (see table 2) are time series and since the raw plot (see figure 1) reveals a cyclic nature, this 
work shall employ the harmonic technique in analyzing the sunspot series. The harmonic analysis 
involves the creation of two predictor variables: one time series that represents a sine of period 휏 and 
another that represents a cosine of period 휏.  

             We recall that a simple bivariate linear regression equation that describes any linear trend of a 
time series is: 

                     푋 = 푎 + 푏푡                                                                                           (2) 
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where 푡 is the time index and 푎 and 푏 are parameters to be estimated by ordinary least squares (OLS) 
method. It should be noted that the above linear equation applies when there is a clear linear trend in 
the time series 푋 . In most cases, however, the time series tends to show regular, sinusoidal cycles     
(see figure 1) thereby calling for a more complex model with trigonometric functions. 

  

 

                                                Figure 1: Raw data plot of the Sunspot Numbers  

 

                 Let us replace 푡 in equation (2) with a trigonometric function of 푡 that represents a sinusoid 
and add the parameters that allow us to estimate the phase and amplitude that best fit the observed 
time series 푋 . Such representation will form the basis for harmonic analysis since it involves fitting a 
sinusoid to a time series. Similar to Granger (1989), we express the form: 

                        푋 = 휇 + 퐴퐶표푠(휔푡 + ∅) + 휀                                                               (3) 

where 휇 is the mean added to give the level of the time series 푋 . 

 퐴 is the amplitude of the wave form, ∅ is the phase or location of peaks relative to time zero, 

 휀  represent residuals expected to give a white noise process if the fitted model is appropriate. 
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A white noise is a sequence of random variables from a fixed distribution usually assumed normal and 
having mean zero and constant variance (Box and Jenkins, 1970). 

  휔 =  is the corresponding frequency in radians. 

                Alternatively, we can represent a more general case of the sinusoid by adding the sine 
component as follows: 

                    푋 = 휇 + 퐴퐶표푠휔푡 + 퐵푆푖푛휔푡 + 휀                                                                      (4) 

 Here, ∅ is relaxed to ease computation of parameter estimates. To obtain ∅, we can set  푡푎푛∅ =  

(Bloomfield, 1976). It is clearly seen from equation (4) that by varying 퐴		푎푛푑		퐵, it is possible to 
generate all possible sinusoids of period 휏. 

              Provided, the period 휏 is known, all the parameters (휇,퐴	푎푛푑	퐵) of equation (4) can be 
estimated using the OLS regression method. Hence predictions of the future can be made at any time 푡. 

Data Analysis and Interpretation 

                The data used for the study was the annual averaged sunspot numbers (1900-2007). The 
analysis was performed with the aid of software called Minitab. A period of 10.8 years identified by  
Iwok (2011) is used in the OLS harmonic modeling of the sunspot numbers. The minitab output of the 
analysis is displayed in table 1 below: 

Table 1: Minitab output 

Regression Analysis 
 
The regression equation is 
Xt* = 60.6 - 44.4 CosWt* + 18.7 SinWt* 
 
Predictor       Coef       StDev          T        P 
Constant      60.619       3.213      18.87    0.000 
CosWt*       -44.406       4.543      -9.77    0.000 
SinWt*        18.661       4.543       4.11    0.000 
 
S = 33.39       R-Sq = 71.7%     R-Sq(adj) = 70.8% 
 
Analysis of Variance 
Source       DF          SS          MS         F        P 
Regression    2      125284       62642     56.20    0.000 
Error       105      117035        1115 
Total       107      242319 
       
            Using equation (4), the estimated harmonic equation that describes the cyclic pattern is: 

                      푋 = 60.6− 44.4퐶표푠휔푡 + 18.7퐶표푠휔푡                                               (5) 

                      with 휔 =
.

. 
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 The estimate of the overall mean of 푋  is the intercept of equation (5) which is 60.6. This indicates the 
level about which 푋  fluctuates. 푅 = 71.7% shows that a 10.8 years cycle account for 71.7% of the 
variance in 푋 . Such high percentage is an indication of good fit of the model (5). 

        The amplitude, 퐴∗ = [퐴 + 퐵 ] = [(−44.4) + (18.7) ] = 48.8. That is, the peaks and troughs of 
the sinusoids are about 48.8 points above and below 60.6.  

Actual and Estimate Plot 

        The estimates of the sunspot numbers were computed from the model: 

             푋 = 60.6− 44.4퐶표푠
.
푡 + 18.7푆푖푛

.
푡                                                 (6) 

  The plot of the estimated values was superimposed on the plot of the raw data to give figure 2 below: 

 

                                                         Key: o(actual plot) and +(estimate plot) 

                                           Figure 2: Actual and Estimate Plot of the Sunspot numbers 푿풕 

             The plot in figure 2 reveals a strong agreement between the real and estimated values of 푋 , thus 
indicating a good fit of the model. 
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  Residual Plot 

           Residual 휀  is obtained from equation (5) as: 

                휀 = 푋 − [60.6− 44.4퐶표푠휔푡 + 18.7푆푖푛휔푡]                                           (7) 

  After fitting the model, the residual obtained was plotted as shown in figure 3 and its variance was 
21.3. 

 

                                                              Figure 3: Residual Plot of 푿풕 

      It is clearly seen from figure 3 that the residual plot gives a white noise process. That is, 

    휀 ~푁퐼퐼퐷(0,휎 ).  

      Summary/Conclusion 

             The study of sunspot numbers has engaged the attention of many researchers due to its 
applicability in climatology especially at this period of combat with global warming. This work is another 
contribution made to generate a model for forecasting sunspot numbers. 

              The sunspot cycle was identified to be 10.8 years (Iwok, 2011) using the percentage variance 
technique. This work used the identified cycle to establish a forecasting model based on harmonic 
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analysis as a form of regression. Using the sunspot data in table 2 and the residual checks, the model is 
found to be adequate and can be used for predicting the future of sunspot numbers. 
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Table 2 : Annual Averaged Wolfer’s Sunspot Numbers Xt (1900-2007) 

Courtesy: Solar Index Data Centre 

YEAR VALUE YEAR VALUE YEAR VALUE YEAR VALUE YEAR VALUE YEAR VALUE 
1900 9.5 1918 80.6 1936 79.7 1954 4.4 1972 68.9 1990 142.6 
1901 2.7 1919 63.6 1937 114.4 1955 38 1973 38 1991 145.7 
1902 5 1920 37.6 1938 109.6 1956 141.7 1974 34.5 1992 94.3 
1903 24.4 1921 26.1 1939 88.8 1957 190.2 1975 15.5 1993 54.6 
1904 42 1922 14.2 1940 67.8 1958 184.8 1976 12.6 1994 29.9 
1905 63.5 1923 5.8 1941 47.5 1959 159 1977 27.5 1995 17.5 
1906 53.8 1924 16.7 1942 30.6 1960 112.3 1978 92.5 1996 8.6 
1907 62 1925 44.3 1943 16.3 1961 53.9 1979 155.4 1997 21.5 
1908 48.5 1926 63.9 1944 9.6 1962 37.6 1980 154.6 1998 64.3 
1909 43.9 1927 69 1945 33.2 1963 27.9 1981 140.4 1999 93.3 
1910 18.6 1928 77.8 1946 92.6 1964 10.2 1982 115.9 2000 199.6 
1911 5.7 1929 64.9 1947 151.6 1965 15.1 1983 66.6 2001 111 
1912 3.6 1930 35.7 1948 136.3 1966 47 1984 45.9 2002 104 
1913 1.4 1931 21.2 1949 134.7 1967 93.8 1985 17.9 2003 63.7 
1914 9.6 1932 11.1 1950 83.9 1968 105.9 1986 13.4 2004 40.4 
1915 47.4 1933 5.7 1951 69.4 1969 105.5 1987 29.4 2005 29.8 
1916 57.1 1934 8.7 1952 31.5 1970 104.5 1988 100.2 2006 15.2 
1917 103.9 1935 36.1 1953 13.9 1971 66.6 1989 157.6 2007 7.55 
 

 

 

                     

 


